Tech found in iPhone X could usher in ‘lightspeed’ broadband in cities

Share on FacebookTweet about this on TwitterShare on LinkedInShare on Google+Pin on PinterestShare on RedditEmail this to someone

An iPhone X. Image: Neirfy/Shutterstock

A team of European researchers has found a way to take technology from the latest iPhone and use it to generate unparalleled broadband speeds.

One of the major selling points of the iPhone X was its user recognition software, capable of scanning your face and creating an Animoji, or turning on music when its AirPod earbuds sense they’ve been placed in your ears.

Behind this technology is something called a vertical-cavity surface-emitting laser (VCSEL), a specialised laser diode that is cheap to manufacture and significantly more energy-efficient than traditional lasers.

Now, a team of EU-funded researchers has managed to find a way to use VCSELs to create ultra-high-speed broadband across large distances, potentially doing away with the data bottlenecks experienced in cities that are only set to increase as the years go on.

Coordinated by the Politecnico di Milano in Italy, the €7.5m Horizon 2020 ‘Passion’ project has managed to incorporate VCSEL sources with silicon photonics to develop long-wavelength, high-capacity communications.

While VCSELs have been used in data communications for short-distance connections in intra-data centres, using these infrared lasers for increasing broadband speeds has never been done before to connect our cities.

A technology we badly need

By including these ultra-fast components, it is expected to achieve transmission rates of up to 112Tbps, or the equivalent of sending 28,000 HD movies in as little as one second.

“VCSELs are a bit of a buzzword at the moment,” said the project’s coordinator, Prof Pierpaolo Boffi.

“They have the advantages of low driving current, high light-power conversion efficiency and high directivity. This makes them an ideal choice for transmitting huge amounts of data in a low-cost, energy-efficient way.”

Boffi continued: “Our researchers are developing a flexible network architecture that will be optimised for metropolitan applications based on aggregated signal flows.

“A 10-fold reduction in power consumption will be achieved by exploiting the full wavelength spectrum and the space dimension in a multi-core fibre.”

The real challenge now for the team is finding a way of deploying VCSEL technology in silicon photonics on a grand scale.

“We need a lighter and more flexible internet with low energy consumption. Otherwise, the future internet costs will be unsustainable,” Boffi said.

An iPhone X. Image: Neirfy/Shutterstock

Colm Gorey is a journalist with Siliconrepublic.com

editorial@siliconrepublic.com

source:https://www.siliconrepublic.com/comms/iphone-x-vcsel-passion-lightspeed-broadband

EU Scientists harness photonics to develop faster, high capacity internet connections

EU Scientists harness photonics to develop high capacity connections
EU Scientists are harnessing next generation lasers to create light-speed high capacity connections

EU Scientists are harnessing next generation lasers to create light-speed high capacity connections and remove the data bottlenecks that could cause the internet to stop as demand increases.

A group of EU-funded researchers are incorporating VCSEL laser sources with silicon photonics to develop long wavelength, high capacity connections for the very first time, paving the way for light-speed high capacity connectivity, and powering new ‘smart’ services like future gaming and on-demand TV.

A Vertical Cavity Surface Emitting Laser (VCSEL) is a specialised laser diode that promises to revolutionise fibre optic communications by improving efficiency and increasing data speed.

Future smart devices and high capacity connections

Future smart services require a massive overhaul of current internet infrastructure. Data ‘bottlenecks’, caused by the volume of users with increasingly sophisticated devices running, music, video, gaming, AI, VR and telecommunications, need to be freed up.

These super-fast components have the potential to revolutionise smart services that consume data for connected citizens of the future.

Whilst VCSELs have been used in data communications for short-distance connections in intra-data centres, using these infrared lasers for long wavelength, and high capacity communications has never been done before.

The research group ‘PASSION’ is keen to exploit VCSEL light sources due to their high transmission efficiency and minimal power consumption. Project coordinator, Professor Pierpaolo Boffi said: “VCSELs … have the advantages of low driving current, high light-power conversion efficiency and high directivity. This makes them an ideal choice for transmitting huge amounts of data in a low cost, energy efficient way.”

Light-Speed Networks

Project coordinator Professor Pierpaolo Boffi said: “We need a lighter and more flexible internet with low energy consumption. Otherwise, the future internet costs will be unsustainable.”

To support a low energy, sustainable communications infrastructure with new photonics technologies, the PASSION group came together to tackle the incoming capacity limitations in optical fibre networks in our cities.

Boffi said: “Fibre optic networks for the effective transmission and routing of a huge amount of data in our cities have undergone frequent development in the last ten years. However, we are now in a situation where bottlenecks in the transmission and the routing of data are becoming inevitable”

“PASSION will come up with new transmission, detection, and routing solutions as well as an advanced network architecture based on innovative laser sources. These solutions ensure a transmission rate of more than 100 Tb/s per link and a switching capacity of over 1 Pb/s per node”.

VCSEL silicon photonics

Developing a new technological platform for their network components, the group will incorporate VCSELs to silicon photonics for the further reduction of the packaging costs of such a technology platform.

VCSELs, the key components in 3D sensing, are currently used in popular electronics platforms, for example, in range finders for smart phone cameras such as Face ID and Animoji.

However, installing such a technology in silicon photonics for high speed internet is a real challenge. PASSION project manager Paola Parolari concludes: “VCSELs could be the next big leap in metro communications. They are already employed widely in data communications, in intra-data centre short-distance connections for example. However exploiting VCSELs, emitting at long wavelengths and integrated in silicon photonics to realise multi-channel modules with very high communication capacity can have tremendous impacts on the fibre networks of our cities in terms of cost, footprint and energy saving”.

Coordinated by the PASSION consortium secured a grant of €7,535,747 from the European Commission under the H2020 funding programme and was funded under the Photonics Public Private Partnership.

source:https://www.scitecheuropa.eu/harness-photonics-high-capacity-connections/88137/

Harnessing Photonics to Develop Faster, High Capacity Internet Networks

PASSION project

A group of EU-funded researchers are incorporating VCSEL laser sources with silicon photonics to develop long wavelength, high capacity communications for the very first time, paving the way for light-speed metropolitan connectivity, and powering new ‘smart’ services like future gaming and on-demand TV.

Employed in the Apple iPhone X to scan a user’s face for Face ID, “portrait mode” photos and Animoji, and in its AirPod earbuds to sense your ears, a Vertical Cavity Surface Emitting Laser (VCSEL) is a specialized laser diode that promises to revolutionize fibre optic communications by improving efficiency and increasing data speed. They are cheap to manufacture, and are more efficient than traditional laser sources.

Future smart services require a massive overhaul of current internet infrastructure. Data ‘bottlenecks’ – or internet ‘traffic jams’ caused by the sheer volume of users with increasingly sophisticated devices running, music, video, gaming, AI, VR and telecommunications – urgently need to be freed up. These super-fast components have the potential to revolutionise smart services that consume enormous amounts of data for connected citizens of the future. With transmission rates up to 112 Tb/s, sending 28 thousand HD movies would take as little as 1 second.

While VCSELs (favored for their rapid data transmission and low power consumption) have been used in data communications for short-distance connections in intra-data centres, using these infrared lasers for long wavelength, and high capacity communications has never been done before to connect our cities.

Calling themselves ‘PASSION’, the research group is keen to exploit VCSEL light sources due to their high transmission efficiency and minimal power consumption.

The PASSION team has ambitions to reduce the current power consumption of the internet by ten times their current rates.

Light-speed networks

US internet technology giant Cisco predicts that internet traffic will grow to an unprecedented 3.3 trillion gigabytes (3.3 zettabytes) per year between 2016 and 2021.

In as little as 3 years from now our internet usage will reach 3 trillion internet video minutes per month, according to the Cisco report. To put this usage into perspective, this is five million years of video per month, or one million video minutes every second.

With the exponential growth rate of users, and the enormous amount of data being sent and received through complex devices, such as gaming, TV and telecoms, the internet as we know it, so project coordinator Professor Pierpaolo Boffi believes, will grind to a halt if nothing is done.

In order to support a low energy, sustainable communications infrastructure with new photonics technologies, the PASSION group came together to tackle the incoming capacity limitations in optical fibre networks in our cities.

VCSEL silicon photonics

Developing a new technological platform for their network components, the PASSION group will incorporate VCSELs, or Vertical-Cavity Surface-Emitting Laser Sources, to silicon photonics for the further reduction of the packaging costs of such a technology platform.

VCSELs, the key components in 3D sensing, are currently used in popular electronics platforms, for example, in range finders for smart phone cameras such as Face ID and Animoji.

However, deploying such a technology in silicon photonics for high speed internet connections for the metropolitan area is a real challenge.

Coordinated by the Politecnico di Milano the PASSION consortium secured a grant of €7,535,747 from the European Commission under the H2020 funding program and was funded under the Photonics Public Private Partnership.

PASSION is comprised of 14 partners with participants from 7 different European countries: (Italy) Politecnico di Milano and SM Optics; (Spain) CTTC, Telefonica and VLC Photonics; (The Netherlands) Technische Universiteit Eindhoven and Effect Photonics; (Finland) VTT; (Germany) Vertilas; (Israel) OpSys Technologies; (France) EPIC; and from 2 extra-Europe countries: (Japan) NICT and (South Korea) ETRI and ChemOptics.

Labels: VCSEL,silicon photonics,broadband,internet,PASSION,gaming,laser,telecommunications

Source: Harnessing Photonics to Develop Faster, High Capacity Internet Networks

La ‘rivoluzione della luce’ per città sempre più connesse

Col progetto internazionale Passion, Italia in prima fila

Si prepara una vera e propria ‘rivoluzione della luce‘, per consentire alle nostre città di essere sempre più connesse attraverso una rete di comunicazione a basso costo e ridotto consumo energetico: svilupparla è l’obiettivo del progetto triennale ‘Passion‘, avviato dal Politecnico di Milano (con il supporto di Fondazione Politecnico di Milano) insieme ad altri 12 partner internazionali e il finanziamento del programma Horizon 2020 della Commissione Europea sotto l’egida della Photonic Private Partnership (Ppp) Photonics21, con un budget complessivo di 8,5 milioni di euro.Nell’ultimo decennio si è assistito ad un continuo sviluppo della rete in fibra ottica in ambito metropolitano. Oggi, però, c’è ‘un collo di bottiglia’ nella trasmissione e nell’indirizzamento dell’enorme quantità di dati, dovuta al drastico aumento degli utenti, alla dimensione dei contenuti e alla convergenza con altre reti come quella mobile. La fotonica è la chiave per supportare l’evoluzione dell’intera infrastruttura, ma le tecnologie sfruttate oggi sono quelle tradizionali, usate per la rete di trasporto a lunga distanza, che risultano troppo costose e con un elevato consumo energetico.L’approccio di Passion (Photonic technologies for progrAmmable transmission and switching modular systems based on Scalable Spectrum/space aggregation for future agIle high capacity metrO Networks) “è completamente alternativo, sia a livello di progetto dei componenti e dispositivi sia a livello di architetture e gestione della rete”, spiega Pierpaolo Boffi, docente del Politecnico e coordinatore del progetto.

“L’obiettivo di Passion è permettere uno sviluppo sostenibile a livello di costi e consumi energetici, garantendo in futuro nelle nostre città la facile trasmissione e commutazione di un’enorme quantità di dati. Il successo del progetto non solo permetterà di rafforzare la leadership industriale europea nelle telecomunicazioni – precisa Boffi – ma contribuirà all’affermazione di una società sempre più connessa, con importanti ricadute sociali ed economiche“.

SOURCE: http://www.ansa.it/canale_scienza_tecnica/notizie/energia/2018/01/19/la-rivoluzione-della-luce-per-citta-sempre-piu-connesse_5ba476fa-16b4-4932-9235-def40360798b.html

Si prepara ‘rivoluzione’ della luce per città più connesse e a basso consumo

Con progetto internazionale guidato da Politecnico di Milano

MILANO – Si prepara una vera e propria ‘rivoluzione della luce’, per consentire alle nostre città di essere sempre più connesse attraverso una rete di comunicazione a basso costo e ridotto consumo energetico: svilupparla è l’obiettivo del progetto triennale ‘Passion’, avviato dal Politecnico di Milano (con il supporto di Fondazione Politecnico di Milano) insieme a 12 partner internazionali e il finanziamento del programma Horizon 2020 della Commissione Europea sotto l’egida della Photonic Private Partnership Photonics21, con un budget complessivo di 8,5 milioni di euro.

Nell’ultimo decennio si è assistito ad un continuo sviluppo della rete in fibra ottica in ambito metropolitano. Oggi, però, c’è ‘un collo di bottiglia’ nella trasmissione e nell’indirizzamento dell’enorme quantità di dati, dovuta al drastico aumento degli utenti, alla dimensione dei contenuti e alla convergenza con altre reti come quella mobile. La fotonica è la chiave per supportare l’evoluzione dell’intera infrastruttura, ma le tecnologie sfruttate oggi sono quelle tradizionali, usate per la rete di trasporto a lunga distanza, che risultano troppo costose e con un elevato consumo energetico.

L’approccio di Passion (Photonic technologies for progrAmmable transmission and switching modular systems based on Scalable Spectrum/space aggregation for future agIle high capacity metrO Networks) “è completamente alternativo, sia a livello di progetto dei componenti e dispositivi sia a livello di architetture e gestione della rete”, spiega Pierpaolo Boffi, docente del Politecnico e coordinatore del progetto.

“L’obiettivo di Passion è permettere uno sviluppo sostenibile a livello di costi e consumi energetici, garantendo in futuro nelle nostre città la facile trasmissione e commutazione di un’enorme quantità di dati. Il successo del progetto non solo permetterà di rafforzare la leadership industriale europea nelle telecomunicazioni – precisa Boffi – ma contribuirà all’affermazione di una società sempre più connessa, con importanti ricadute sociali ed economiche”.

SOURCE: http://www.ansa.it/canale_ambiente/notizie/green_economy/2018/01/19/si-prepara-rivoluzione-della-luce-per-citta-piu-connesse_64d7e296-bc2a-43c2-8642-b3dfd6140429.html

‘Rivoluzione’ luce per città più connesse

Con progetto internazionale guidato da Politecnico di Milano

a38dd2ac1b47b332c467e9c2f8d26934.jpg

(ANSA) – MILANO, 19 GEN – Si prepara una vera e propria ‘rivoluzione della luce’, per consentire alle nostre città di essere sempre più connesse attraverso una rete di comunicazione a basso costo e ridotto consumo energetico: svilupparla è l’obiettivo del progetto triennale ‘Passion’, avviato dal Politecnico di Milano (con il supporto di Fondazione Politecnico di Milano) insieme a 12 partner internazionali e il finanziamento del programma Horizon 2020 della Commissione Europea sotto l’egida della Photonic Private Partnership Photonics21, con un budget complessivo di 8,5 milioni di euro.

Nell’ultimo decennio si è assistito ad un continuo sviluppo della rete in fibra ottica in ambito metropolitano. Oggi, però, c’è ‘un collo di bottiglia’ nella trasmissione e nell’indirizzamento dell’enorme quantità di dati, dovuta al drastico aumento degli utenti, alla dimensione dei contenuti e alla convergenza con altre reti come quella mobile. La fotonica è la chiave per supportare l’evoluzione dell’intera infrastruttura.

SOURCE: https://tecnologia.libero.it/rivoluzioneluce-per-citta-piu-connesse-18261

La fotonica aiuterà le città a essere più connesse (sprecando di meno)

Una rete metropolitana basata sulla fotonica per garantire una maggiore trasmissione dei dati e un costo minore

 La fotonica aiuterà le città a essere più connesse (sprecando di meno)

VALENTINA FERRERO

MILANO – Il gap con il resto d’Europa c’è, ma non è poi così disastroso come più voci sostengono. Se fino a 5-6 anni fa potevamo considerarci un paese arretrato, dove solo il 20% della popolazione aveva accesso garantito alla fibra, oggi siamo arrivati a circa il 70%, contro una media europea del 75%. Almeno questi sono i dati ufficializzati da Alberto Calcagno, amministratore delegato di Fastweb. Il massiccio sviluppo della rete in fibra ottica che si è verificato in questi ultimi 10 anni, tuttavia, ha portato con sé un problema significativo. Stiamo assistendo, oggi, a un vero e proprio «collo di bottiglia» nella trasmissione e nell’indirizzamento dell’enorme quantità di dati dovuta al drastico aumento degli utenti, alla dimensione dei contenuti e alla convergenza con altre reti come quella mobile e datacom. Le tecnologie utilizzate oggi per supportare l’intera infrastruttura delle telecomunicazioni, inoltre, risultano troppo costose e caratterizzate da un elevato consumo energetico.

L’utilizzo della fotonica
Una soluzione per diminuire il dispendio di energia e rendere le città più connesse è rappresentata dalla fotonica. Una rete di tipo metropolitano basato sulla fotonica, a basso costo e consumo energetico, è capace di assicurare un rate di trasmissione di oltre 100 Tb/s per collegamento e una capacità di commutazione di oltre 1 Pb/s per nodo. Di costruire e sperimentare la rete se ne sta occupando «Passion», progetto avviato dal Dipartimento di Elettronica, Informazione e Bioingegneria del Politecnico di Milano, con il supporto di Fondazione Politecnico di Milano e finanziato dalla Commissione europea per un valore complessivo di 8,5 milioni di euro (Horizon).

Maggiore trasmissione di dati
A spiegarci meglio di cosa si tratta è Pierpaolo Boffi, docente di Fondamenti di Telecomunicazioni al Politecnico di Milano e coordinatore del progetto. «L’approccio di Passion è completamente alternativo rispetto alle soluzioni oggi proposte per la rete ottica di tipo metropolitano, sia a livello di progetto dei componenti e dispositivi sia a livello di architetture e gestione della rete – afferma Boffi -. L’obiettivo del progetto è permettere uno sviluppo sostenibile a livello di costi e consumi energetici, garantendo in futuro nelle nostre città la facile trasmissione e commutazione di un’enorme quantità di dati. Il successo del progetto non solo permetterà di rafforzare la leadership industriale europea nell’ambito delle telecomunicazioni, ma contribuirà all’affermazione di una società sempre più connessa, con importanti ricadute sia sociali che economiche».

La piattaforma tecnologica
Passion svilupperà un’innovativa piattaforma tecnologica basata sull’utilizzo di speciali sorgenti laser a emissione verticale (di tipo VCSEL) modulate direttamente e di ricevitori coerenti multicanale integrati sfruttando la tecnologia in Silicon-Photonics, al fine di garantire una elevata modularità, con la possibilità di generare flussi aggregati di segnali con una capacità di 112 Tb/s per collegamento sfruttando una fibra con 7 nuclei. Tale scelta tecnologica permetterà di ridurre di 10 volte il consumo di potenza rispetto ai moduli oggi commercialmente disponibili basati su sorgenti tradizionali modulate esternamente. Le dimensioni dei moduli realizzati in Passion saranno addirittura 3 ordini di grandezza inferiori rispetto alle attuali soluzioni WDM.

Con questi innovativi trasmettitori e ricevitori Passion progetterà un’architettura di rete estremamente flessibile, ottimizzata per applicazioni in ambito metropolitano, basata su flussi di segnali aggregati sfruttando l’intero spettro di lunghezze d’onda e la dimensione «spazio» attraverso l’uso di una fibra con nuclei multipli. Dispositivi fotonici capaci di aggregare/disaggregare e/o indirizzare i flussi di dati in funzione del colore e/o dello spazio permetteranno di raggiungere una capacità di commutazione per nodo pari a 1 Pb/s. L’architettura di rete metro sviluppata in Passion garantirà così una completa programmabilità utile a rispondere all’evoluzione del traffico di rete.

SOURCE: https://www.diariodelweb.it/innovazione/articolo/?nid=20180119-479968

EU PASSION project to use VCSELs in new silicon photonics architecture

On 12-13 December 2017, the PASSION project partners had their kick-off meeting at Politecnico di Milano. (Image credit: EPIC)

PASSION (Photonic technologies for a programmable transmission and switching modular systems based on Scalable Spectrum/space aggregation for future high capacity metrO Networks) is a three-year project, funded by one of the calls under the Photonic Private Partnership (PPP) Photonics21 of the Horizon 2020 European program, with a total budget of almost 8.5 million euros (nearly $10 million dollars). The project was launched in December 2017 by 12 partners (CTTC, Telefonica and VLC Photonics – Spain, TU Eindhoven and Effect Photonics – The Netherlands, Vertilas – Germany, VTT – Finland, Opsys Technologies – Israel, SM Optics – Italy, EPIC – France, NICT – Japan, ETRI – South Korea) and coordinated by Politecnico di Milano – Italy.

PASSION is a platform based on photonic technologies supporting the development of the future metropolitan communications network, characterized by high transmission capacity, low cost, and reduced energy consumption. New transmission, detection, and routing solutions in a new network architecture ensure a transmission rate of more than 100 Tb/s per link and a switching capacity of over 1 Pb/s per node. PASSION will use a technological platform based on directly-modulated vertical-cavity surface-emitting laser sources (VCSELs) and on multichannel coherent receivers integrated on silicon photonics technology, providing high modularity and aggregating signal flows with a capacity of 16 Tb/s per channel and 112 Tb/s per link exploiting a 7-core fiber.

The new architecture is supposed to achieve a 10-fold power-consumption reduction with respect to commercially available modules based on externally modulated traditional sources. The dimensions of the PASSION modules will be even three orders lower than the current WDM solutions. The flexible network architecture will be optimized for metro applications based on aggregated signal flows, exploiting the full wavelength spectrum and the “space” dimension in a multi-core fiber. Photonic devices capable of aggregating/disaggregating and/or routing data flows in spectrum and/or in space will allow a switching capacity of 1 Pb/s node. The metro network architecture developed in PASSION will thus provide a full programmability to match the traffic evolution and the increasing communications needs of our society.

“Among other innovations, PASSION represents a further step in the incorporation of VCSELs to Silicon Photonics for the further reduction of the packaging costs of such technology platform. VCSELs are lately being incorporated to the consumer electronics platform, for example, in range finders for mobile phone cameras. Their further use in Silicon Photonics for high speed interconnects can be the major breakthrough that the Datacom industry has been waiting for,” says Jose Pozo, director of technology and innovation at the European Photonics Industry Consortium (EPIC; Brussels, Belgium)

SOURCE: http://www.laserfocusworld.com/articles/2017/12/eu-passion-project-to-use-vcsels-in-new-silicon-photonics-architecture.html

Beating the bottleneck: PASSION transmitters and receivers offer 10-fold cut in power-consumption

PASSION project partners at kick-off meeting at Politecnico di Milano on 12 December 2017.

Over recent decades, the optical communications sector has enabled and assisted in the continuous development of the fibre-based networks for metropolitan applications, but the industry is now facing a bottleneck in the transmission and the routing of the huge amount of data due to the dramatic increase in the users number, in the content size, and to the convergence of mobile and datacom networks.

Photonics is a key enabling technology for the evolution of the entire telecommunications infrastructure, but the technologies used so far for the metro network directly derive from the long-distance transport and they are too expensive and power hungry.

New optical platform
PASSION is a new platform based on photonic technologies supporting the development of the future metropolitan communications network, characterised by very high transmission capacity, low cost and reduced energy consumption. Innovative transmission, detection and routing solutions and a new network architecture to ensure a transmission rate of over 100 Tb/s per link and a switching capacity of over 1 Pb/s per node.

PASSION will develop an innovative technological platform based on directly-modulated vertically emitting laser sources (VCSEL) and on multi-channel coherent receivers integrated on Silicon-Photonics technology, providing high modularity and aggregating signal flows with a capacity of 16 Tb/s per channel and 112 Tb/s per link exploiting a 7-core fibre.

PASSION technologies will achieve a 10-fold power-consumption reduction with respected to commercially available modules based on externally modulated traditional sources. The dimensions of the PASSION modules will be even 3 orders lower than the current WDM solutions.

Flexible network architecture
Thanks to these innovative transmitters and receivers PASSION will design a flexible network architecture, optimised for metro applications, based on aggregated signal flows, exploiting the full wavelength spectrum and the “space” dimension in a multi-core fibre.

Photonic devices capable of aggregating/disaggregating and/or routing data flows in spectrum and/or in space will allow a switching capacity of 1 Pb/s node. The metro network architecture developed in PASSION will thus provide a full programmability to match the traffic evolution and the increasing communications needs of our society.

Pierpaolo Boffi, professor at the Politecnico di Milano and coordinator of PASSION, commented, “The PASSION project is adopting a disruptive approach in the design of components and devices as well as in the network architecture and management with respect to today’s metro network solutions.

“PASSION’s ambitious goal is to provide a sustainable communications infrastructure in terms of cost and energy consumption, ensuring the effective transmission and routing of a huge amount of data in our cities. PASSION will strengthen the European industrial leadership in optical communications and it will support a highly connected and communicating society with important social and economic benefits.”

SOURCE: http://opticalconnectionsnews.com/2017/12/beating-bottleneck-passion-transmitters-receivers-offer-10-fold-cut-power-consumption/

Photonics Consortium Seeks Low-Cost, High-Speed Metro Data Solutions

News

A new consortium of 12 partner companies from across Europe has begun developing new, lower-cost photonic transmission/reception solutions to meet the growing needs of data hungry mobile and fixed communications requirements.

The group, which formed officially in Milan, Italy on 13th December, is called PASSION, which represents their goal for developing photonic technologies for a programmable transmission and switching modular systems based on scalable spectrum/space aggregation for future high capacity metro networks. Members of the consortium include CTTC, Telefonica and VLC Photonics (Spain); TU Eindhoven and Effect Photonics (The Netherlands); Vertilas (Germany); VTT (Finland); Opsys Technologies (Israel); SM Optics (Italy); EPIC (France); NICT (Japan); ETRI (South Korea); with coordination by Politecnico di Milano (Italy).

Pierpaolo Boffi, professor at the Politecnico di Milano and coordinator of PASSION, described the group’s focus as taking a disruptive approach in designing and producing future photonic circuits that deliver high-speed, wide bandwidth components typically found in long-distance fiber optic communications, but at significantly lower costs to facilitate their application in city level and metropolitan areas.

“PASSION adopts a disruptive approach in the design of components and devices as well as in the network architecture and management with respect to today’s metro network solutions. PASSION’s ambitious goal is to provide a sustainable communications infrastructure in terms of cost and energy consumption, ensuring the effective transmission and routing of a huge amount of data in our cities. PASSION will strengthen European industrial leadership in optical communications; it will support a highly connected and communicating society with important social and economic benefits,” Professor Boffi said.

Efforts by the new group are funded through a European Commission program, Horizon 2020, under the Photonics21 program that seeks in part to supply future high speed mobile and telecom data transmission/reception requirements through companies across Europe.

Boffi remarked that In the last decade, member companies have supported the continuous development of fiber optic networks for metropolitan applications, but network evolution has reached a point where bottlenecks in the transmission and the routing of data have become inevitable due to the dramatic increase in the number of users, the amount of data being sent, and continual networking shifts from traditional fixed-location transmission/reception points to an ever-increasing number of mobile data users. Lack of affordable, high-speed solutions is already causing transmission delays, dropped connections and lengthy upload/download user experiences in some areas across Europe and elsewhere.

The consortium believes that photonics is a key enabling technology for the evolution of the entire telecommunications infrastructure. At the same time, technologies used today for most metropolitan markets is derived from the higher cost, long-distance data transport applications that have enabled higher data rates, but at greater costs as speed and bandwidth requirements increase. Legacy solutions are too expensive and power hungry to be utilized across the world’s smaller cities and in rural markets.

Boffi explained that the group sees PASSION as a platform based on photonic technologies supporting the development of future metropolitan communications networks, characterized by very high transmission capacity, low cost and reduced energy consumption. The group will seek to develop innovative transmission, detection and routing solutions as well as a new network architecture to ensure a transmission rate of over 100 Tb/s (terabit per second) transmission rate per link and a switching capacity of over 1 Pb/s (petabyte per second) per node. PASSION will seek to develop an innovative technological platform based on directly-modulated vertically emitting laser sources (VCSEL) and multi-channel coherent receivers integrated on silicon photonics technology, providing high modularity and aggregating signal flows with a capacity of 16 Tb/s per channel and 112 Tb/s per link exploiting a 7-core fiber.

Another goal of the consortium is to achieve a 10-fold power-consumption reduction with respect to commercially available modules based on externally modulated traditional sources. The group believes that dimensions of future PASSION modules could be as much as three orders lower than current WDM solutions. The innovative transmitters and receivers PASSION seeks to design will support flexible network architecture, optimized for metro applications, based on aggregated signal flows, exploiting the full wavelength spectrum and the “space” dimension in a multi-core fiber. Photonic devices capable of aggregating/disaggregating and/or routing data flows in spectrum and/or in space will allow a switching capacity of 1 Pb/s node. The metro network architecture developed by PASSION will provide full programmability to match the rapid evolution of data traffic and society’s increasing communications needs.

Jose Pozo, Director of Technology and Innovation at consortium member EPIC added that, “Among other innovations, PASSION represents a further step in the incorporation of VCSELs to silicon photonics for the further reduction of the packaging costs of such a technology platform. VCSELs are lately being incorporated into consumer electronics platforms, for example, in range finders for mobile phone cameras. Their further use in silicon photonics for high speed interconnects can be the major breakthrough that the datacom industry has been waiting for.”

SOURCE: https://picmagazine.net/article/103054/New_Photonics_Consortium_Seeks_Low-Cost_High-Speed_Metro_Data_Solutions

© Polimi 2018 - All rights reserved